
머신러닝 알고리즘 4. 나이브 베이즈
ML&DL/study
2021. 6. 15. 09:42
확률 기반 머신러닝 분류 알고리즘 데이터를 나이브(단순)하게 독립적인 사건으로 가정하고 베이즈 이론에 대입시켜 가장 높은 확률의 레이블로 분류를 실행하는 알고리즘 P(레이블 | 데이터 특징) = P(데이터 특징 | 레이블) * P(레이블) / P(데이터 특징) 어떤 데이터가 있을 때 그에 해당하는 레이블은 기존 데이터의 특징 및 레이블의 확률을 사용해 구할 수 있음 > 나이브 베이즈 예시 치킨집에서 저녁에 손님이 오는 경우 맥주를 주문할지 안할지 예측 시간 맥주 오전 주문 X 오전 주문 X 점심 주문 O 점심 주문 X 점심 주문 X 저녁 주문 O 저녁 주문 O 저녁 주문 O 저녁 주문 X 저녁 주문 X 나이브 베이즈 공식 이용 P(주문 | 저녁) = P(저녁 | 주문) * P(주문) / P(저녁) = (..